3.272 \(\int \frac {(d+e x^2)^{3/2} (a+b \log (c x^n))}{x^6} \, dx\)

Optimal. Leaf size=138 \[ -\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{5 d}-\frac {b e^2 n \sqrt {d+e x^2}}{5 d x}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3} \]

[Out]

-1/15*b*e*n*(e*x^2+d)^(3/2)/d/x^3-1/25*b*n*(e*x^2+d)^(5/2)/d/x^5+1/5*b*e^(5/2)*n*arctanh(x*e^(1/2)/(e*x^2+d)^(
1/2))/d-1/5*(e*x^2+d)^(5/2)*(a+b*ln(c*x^n))/d/x^5-1/5*b*e^2*n*(e*x^2+d)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2335, 277, 217, 206} \[ -\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}-\frac {b e^2 n \sqrt {d+e x^2}}{5 d x}+\frac {b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{5 d}-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/x^6,x]

[Out]

-(b*e^2*n*Sqrt[d + e*x^2])/(5*d*x) - (b*e*n*(d + e*x^2)^(3/2))/(15*d*x^3) - (b*n*(d + e*x^2)^(5/2))/(25*d*x^5)
 + (b*e^(5/2)*n*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/(5*d) - ((d + e*x^2)^(5/2)*(a + b*Log[c*x^n]))/(5*d*x^5)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2335

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n]))/(d*f*(m + 1)), x] - Dist[(b*n)/(d*(m + 1)), Int[(f*x)^
m*(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m + r*(q + 1) + 1, 0] && NeQ[
m, -1]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^6} \, dx &=-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {(b n) \int \frac {\left (d+e x^2\right )^{5/2}}{x^6} \, dx}{5 d}\\ &=-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {(b e n) \int \frac {\left (d+e x^2\right )^{3/2}}{x^4} \, dx}{5 d}\\ &=-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {\left (b e^2 n\right ) \int \frac {\sqrt {d+e x^2}}{x^2} \, dx}{5 d}\\ &=-\frac {b e^2 n \sqrt {d+e x^2}}{5 d x}-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {\left (b e^3 n\right ) \int \frac {1}{\sqrt {d+e x^2}} \, dx}{5 d}\\ &=-\frac {b e^2 n \sqrt {d+e x^2}}{5 d x}-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}+\frac {\left (b e^3 n\right ) \operatorname {Subst}\left (\int \frac {1}{1-e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{5 d}\\ &=-\frac {b e^2 n \sqrt {d+e x^2}}{5 d x}-\frac {b e n \left (d+e x^2\right )^{3/2}}{15 d x^3}-\frac {b n \left (d+e x^2\right )^{5/2}}{25 d x^5}+\frac {b e^{5/2} n \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{5 d}-\frac {\left (d+e x^2\right )^{5/2} \left (a+b \log \left (c x^n\right )\right )}{5 d x^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 114, normalized size = 0.83 \[ -\frac {\sqrt {d+e x^2} \left (15 a \left (d+e x^2\right )^2+b n \left (3 d^2+11 d e x^2+23 e^2 x^4\right )\right )+15 b \left (d+e x^2\right )^{5/2} \log \left (c x^n\right )-15 b e^{5/2} n x^5 \log \left (\sqrt {e} \sqrt {d+e x^2}+e x\right )}{75 d x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/x^6,x]

[Out]

-1/75*(Sqrt[d + e*x^2]*(15*a*(d + e*x^2)^2 + b*n*(3*d^2 + 11*d*e*x^2 + 23*e^2*x^4)) + 15*b*(d + e*x^2)^(5/2)*L
og[c*x^n] - 15*b*e^(5/2)*n*x^5*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]])/(d*x^5)

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 314, normalized size = 2.28 \[ \left [\frac {15 \, b e^{\frac {5}{2}} n x^{5} \log \left (-2 \, e x^{2} - 2 \, \sqrt {e x^{2} + d} \sqrt {e} x - d\right ) - 2 \, {\left ({\left (23 \, b e^{2} n + 15 \, a e^{2}\right )} x^{4} + 3 \, b d^{2} n + 15 \, a d^{2} + {\left (11 \, b d e n + 30 \, a d e\right )} x^{2} + 15 \, {\left (b e^{2} x^{4} + 2 \, b d e x^{2} + b d^{2}\right )} \log \relax (c) + 15 \, {\left (b e^{2} n x^{4} + 2 \, b d e n x^{2} + b d^{2} n\right )} \log \relax (x)\right )} \sqrt {e x^{2} + d}}{150 \, d x^{5}}, -\frac {15 \, b \sqrt {-e} e^{2} n x^{5} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right ) + {\left ({\left (23 \, b e^{2} n + 15 \, a e^{2}\right )} x^{4} + 3 \, b d^{2} n + 15 \, a d^{2} + {\left (11 \, b d e n + 30 \, a d e\right )} x^{2} + 15 \, {\left (b e^{2} x^{4} + 2 \, b d e x^{2} + b d^{2}\right )} \log \relax (c) + 15 \, {\left (b e^{2} n x^{4} + 2 \, b d e n x^{2} + b d^{2} n\right )} \log \relax (x)\right )} \sqrt {e x^{2} + d}}{75 \, d x^{5}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^6,x, algorithm="fricas")

[Out]

[1/150*(15*b*e^(5/2)*n*x^5*log(-2*e*x^2 - 2*sqrt(e*x^2 + d)*sqrt(e)*x - d) - 2*((23*b*e^2*n + 15*a*e^2)*x^4 +
3*b*d^2*n + 15*a*d^2 + (11*b*d*e*n + 30*a*d*e)*x^2 + 15*(b*e^2*x^4 + 2*b*d*e*x^2 + b*d^2)*log(c) + 15*(b*e^2*n
*x^4 + 2*b*d*e*n*x^2 + b*d^2*n)*log(x))*sqrt(e*x^2 + d))/(d*x^5), -1/75*(15*b*sqrt(-e)*e^2*n*x^5*arctan(sqrt(-
e)*x/sqrt(e*x^2 + d)) + ((23*b*e^2*n + 15*a*e^2)*x^4 + 3*b*d^2*n + 15*a*d^2 + (11*b*d*e*n + 30*a*d*e)*x^2 + 15
*(b*e^2*x^4 + 2*b*d*e*x^2 + b*d^2)*log(c) + 15*(b*e^2*n*x^4 + 2*b*d*e*n*x^2 + b*d^2*n)*log(x))*sqrt(e*x^2 + d)
)/(d*x^5)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \log \left (c x^{n}\right ) + a\right )}}{x^{6}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^6,x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^(3/2)*(b*log(c*x^n) + a)/x^6, x)

________________________________________________________________________________________

maple [F]  time = 0.42, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (b \ln \left (c \,x^{n}\right )+a \right )}{x^{6}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(3/2)*(b*ln(c*x^n)+a)/x^6,x)

[Out]

int((e*x^2+d)^(3/2)*(b*ln(c*x^n)+a)/x^6,x)

________________________________________________________________________________________

maxima [A]  time = 0.64, size = 156, normalized size = 1.13 \[ \frac {{\left (\frac {10 \, {\left (e x^{2} + d\right )}^{\frac {3}{2}} e^{3} x}{d^{2}} + \frac {15 \, \sqrt {e x^{2} + d} e^{3} x}{d} + 15 \, e^{\frac {5}{2}} \operatorname {arsinh}\left (\frac {e x}{\sqrt {d e}}\right ) - \frac {8 \, {\left (e x^{2} + d\right )}^{\frac {5}{2}} e^{2}}{d^{2} x} - \frac {2 \, {\left (e x^{2} + d\right )}^{\frac {7}{2}} e}{d^{2} x^{3}} - \frac {3 \, {\left (e x^{2} + d\right )}^{\frac {7}{2}}}{d x^{5}}\right )} b n}{75 \, d} - \frac {{\left (e x^{2} + d\right )}^{\frac {5}{2}} b \log \left (c x^{n}\right )}{5 \, d x^{5}} - \frac {{\left (e x^{2} + d\right )}^{\frac {5}{2}} a}{5 \, d x^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^6,x, algorithm="maxima")

[Out]

1/75*(10*(e*x^2 + d)^(3/2)*e^3*x/d^2 + 15*sqrt(e*x^2 + d)*e^3*x/d + 15*e^(5/2)*arcsinh(e*x/sqrt(d*e)) - 8*(e*x
^2 + d)^(5/2)*e^2/(d^2*x) - 2*(e*x^2 + d)^(7/2)*e/(d^2*x^3) - 3*(e*x^2 + d)^(7/2)/(d*x^5))*b*n/d - 1/5*(e*x^2
+ d)^(5/2)*b*log(c*x^n)/(d*x^5) - 1/5*(e*x^2 + d)^(5/2)*a/(d*x^5)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (e\,x^2+d\right )}^{3/2}\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{x^6} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^(3/2)*(a + b*log(c*x^n)))/x^6,x)

[Out]

int(((d + e*x^2)^(3/2)*(a + b*log(c*x^n)))/x^6, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \log {\left (c x^{n} \right )}\right ) \left (d + e x^{2}\right )^{\frac {3}{2}}}{x^{6}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(3/2)*(a+b*ln(c*x**n))/x**6,x)

[Out]

Integral((a + b*log(c*x**n))*(d + e*x**2)**(3/2)/x**6, x)

________________________________________________________________________________________